Problema propuesto de geometría analítica: el alumno desmotivado.
El problema de geometría analítica que propongo esta semana sirve para homenajear a Jesús, mi profesor de matemáticas de 2º de Bachillerato. Sí, ha llovido mucho desde entonces (pero no literalmente, al menos en Alicante, la árida ciudad donde estudiaba). Uno de los mejores profesores de mates que he conocido. No hace falta añadir nada más.
Historia de los medios de transporte y principio físico aplicable al funcionamiento de cada uno de ellos.
A lo largo de su historia, la humanidad ha intentado mejorar continuamente los medios de que disponía para trasladarse de un lugar a otro. Existe un motivo primordial que ha ido cobrando más y más relevancia con el desarrollo de la tecnología: el tiempo. El otro motivo radica en la energía. Ambos representan recursos tan valiosos como escasos. Pero no entraremos en implicaciones profundas. Sencillamente propongo un repaso a la historia de los medios de transporte más empleados en la actualidad, y nos detendremos para analizar qué principio físico posibilita el funcionamiento de cada uno de ellos.
Distribución lineal de carga en coordenadas cilíndricas
Vamos a calcular el campo eléctrico debido a una semicircunferencia cargada partiendo del hecho de que la figura posee una simetría cilíndrica. Puesto que la aplicación del teorema de Gauss exige tener en consideración la forma de la distribución de carga. Este problema es muy sencillo, y de esta forma se pueden resolver todos los problemas que impliquen distribución LINEAL de carga y simetría cilíndrica.
Problema resuelto: campo eléctrico debido a un plano indefinido cargado uniformemente con dos distribuciones de carga del mismo valor pero signos opuestos.
Cuando estudiaba electromagnetismo en la facultad, o cualquier otra asignatura de Ciencias Físicas, solía preguntarme la utilidad de los cientos de problemas propuestos. Por un lado, tenemos la finalidad inmediata. Dado que no existe un truco mágico para aprobar los exámenes, el único secreto consiste en resolver problemas como un loco, cada día, al menos cinco de cada materia. Primero para coger soltura y segundo porque existen decenas de supuestos diferentes para cada apartado. Por otro lado, la finalidad última estriba en conocer la aplicación real de esas fórmulas.
Naves espaciales que pasaron a la historia. Clasificación.
Ilustración de un traje EMU avanzado, realizada por Gigi Moaramore
En mi opinión, entre los más importantes logros tecnológicos de la civilización humana y, lógicamente, más reciente que el ferrocarril, se encuentran las naves espaciales: increíbles vehículos capaces de abandonar la atmósfera terrestre, que destacan por su potencia y su velocidad. Desde el punto de vista físico, hay dos conceptos que siempre me han fascinado: el tiempo y la energía. Por eso creo que lo más interesante a la hora de hablar sobre naves espaciales consiste en la velocidad que pueden alcanzar y, sobre todo, los sistemas de propulsión. ¿Qué hace que un vehículo espacial se proyecte en contra de la fuerza gravitatoria?
Cálculo del campo eléctrico debido a una serie de cargas puntuales dispuestas en el eje de ordenadas y a una distribución lineal de carga
A menudo, la primera dificultad con la que se encuentran los estudiantes de física de cursos iniciales estriba en identificar qué fórmula se debe aplicar a cada problema. O más correctamente, cómo relacionar una serie de expresiones matemáticas con un caso físico real. Para ello tenemos que saber, en primer lugar, diferenciar el supuesto físico que nos propone el problema, porque aunque las leyes físicas resultan inmutables, la naturaleza, en este caso el campo eléctrico, se comporta de diversas formas según las condiciones que se den.
Problema resuelto de electromagnetismo: el cable coaxial
Nos ubicamos en el tema electromagnetismo, que se estudia normalmente en la asignatura Física II del primer curso de la mayoría de las ingenierías. También se estudia como asignatura independiente en la carrera de Física. Así que voy a proponer y, seguidamente, a resolver, un problema-tipo muy conocido, que también podemos encontrarlo con diferente nomenclatura y con los signos de la intensidad cambiados. Pero básicamente el enunciado siempre pide lo mismo.
Dualidad onda-partícula: la bipolaridad de las partículas subatómicas
Ya abordamos en nuestra sección de artículos algunas de las principales diferencias entre el mundo macroscópico y el microscópico (véase El corazón de la mecánica cuántica), y como las leyes de la física aplicables a uno no siempre se cumplen en el otro, o mejor, en el mundo microscópico imperan leyes privativas. De este modo introdujimos la teoría del todo y en qué consiste básicamente la mecánica cuántica. Una de las conclusiones que extrajimos de ese artículo se resume en que en el mundo de las partículas subatómicas los lindes entre conceptos se desdibujan, y así nos topamos de bruces con la hipótesis de la dualidad onda-corpúsculo, también denominada dualidad onda-partícula.
Principio de conservación de la energía, ¿apoya la hipótesis de que la energía es infinita?
Todos hemos oído alguna vez de este principio fundamental de la física: la energía ni se crea ni se destruye, solo se transforma. Se le conoce como el principio de conservación de la energía y, tal vez, solo unos pocos se pregunten qué implica y por qué es tan importante. La clave radica en la energía.